33 research outputs found

    Reconstructing temperature at Egelsee, Switzerland, using North American and Swedish chironomid transfer functions: potential and pitfalls

    Get PDF
    The temperature reconstruction obtained from chironomids preserved in the sediment of Egelsee, Switzerland, was partially flawed by the low percentages of fossil taxa represented in the Swiss calibration set (Larocque-Tobler et al. 2009a). Transfer functions (TFs) from other regions, which allow a good representation of the fossil taxa (>80%), could be applied to the fossil assemblages of Egelsee. First, the validity of using two (a Swedish and a North American (NA)) TFs was tested by comparing the chironomid-inferred temperatures with instrumental data. Since good relationships (r Pearson=0.71 and 0.61, p=0.001 for the NA and Swedish TFs, respectively) were obtained, these two models were used to reconstruct the Late Glacial and early Holocene periods at Egelsee. Reconstructions using both models showed clear cold periods during the Younger Dryas and the so-called 8,200 calibrated years BP event. However, the amplitude of changes during these periods was higher when the NA transfer function was used, probably due to the fact that 37% of the taxa in the core had temperature optima colder in the NA than in the Swedish and Swiss models. The results indicate that TFs from other regions can be applied when they are based on samples with good modern analogues, however, caution should be taken when the amplitude of temperature changes is considere

    The use of cotton blue stain to improve the efficiency of picking and identifying chironomid head capsules

    Get PDF
    Cotton blue was added to sediment samples at least 2h before chironomid head capsules were picked under a binocular microscope and mounted on slides for identification. The use of stain greatly increased the visibility of chironomid head capsules during picking and enhanced the contrast of various parts of the head capsules (pores, ventromental plates, striations on ventromental plates), which could aid identification. In the seven samples studied, there was no significant difference between the percentages of taxa found in stained and unstained samples. The number of taxa were also similar in stained and unstained samples. This method allowed samples to be picked faste

    Late Glacial and Holocene temperature changes at Egelsee, Switzerland, reconstructed using subfossil chironomids

    Get PDF
    A temperature reconstruction using chironomids was attempted at Egelsee, Switzerland, a site where pollen and macrofossil records showed a correspondence between vegetation and climatic changes inferred by other proxies in Europe. The general pattern of temperature changes inferred from chironomids during the Late Glacial [i.e. cold temperatures between ca. 16,500 and 14,800cal BP, close to present-day temperature between 15,000 and 13,000cal BP and colder temperatures during the Younger Dryas (YD)], and the major temperature changes of the Holocene (i.e. the Younger Dryas-Holocene transition and the Late Holocene cooling trend) at Egelsee, were mirrored in other European climate reconstructions using various proxies. However, the amplitude of temperature changes during the YD was smaller than reconstructed by other proxies at various sites, and the 8,200years BP event was not apparent. These differences between records were probably due to the dominance of Corynocera ambigua, with percentages reaching 60% in parts of the Egelsee sequence. This taxon was not present in any of the 103 lakes used for the transfer function and its absence may have yielded less accurate inferences. Its presence in samples only associated with cold inferences at Egelsee suggests that this taxon is a cold indicator. However, it was also found in warm Danish lakes and the factors that determine the presence of C. ambigua remain unexplained. Most samples had a poor fit to temperature and instead, dissolved organic carbon seemed to be a factor influencing the chironomid assemblages during the Holocene. These results illustrate the need to better understand the ecology of chironomids and to disentangle the various factors that affect chironomid communities through time. Ultimately, such information will lead to more accurate temperature reconstruction

    Response of Lacustrine Biota to Late Holocene Climate and Environmental Conditions in Northernmost Ungava (Canada)

    Get PDF
    Sediment cores from three lakes located in the northernmost region of Ungava, Québec (Canada) were examined to define aquatic community and ecosystem variability during the Late Holocene period. A chironomid-based transfer function was used to reconstruct August air temperature trends, and lacustrine primary production was inferred from sedimentary biogenic silica content and siliceous microfossil abundances. Trends in primary production, sediment organic matter content (estimated through loss on ignition), and chironomid-inferred temperature were compared to explore potential effects of environmental change on biotic assemblage composition at centennial to millennial time scales. Although no direct correlation between chironomid-inferred August air temperature and primary production was observed, we found indications that both chironomid and diatom communities were responding to the same overarching regional climatic and environmental processes. Over the last decade, northern Québec has been undergoing notable, rapid warming that contrasts with the relative inertia of the past few millennia. This study provides a baseline against which recent and future environmental changes in this region can be compared. Les archives sédimentaires couvrant la période de l’Holocène tardif ont été examinées dans trois lacs situés dans la région du nord de l’Ungava, au Québec (Canada). Un modèle d’inférence basé sur les assemblages de chironomides a été utilisé pour reconstruire la variabilité des températures de l’air du mois d’août, et la production primaire lacustre a été inférée par le contenu sédimentaire en silice biogénique et les abondances des microfossiles siliceux. Les variations historiques de la production primaire, du contenu organique du sédiment (évalué par la perte au feu) et les températures inférées ont été comparées afin d’explorer les effets potentiels des changements environnementaux sur la composition des assemblages à différentes échelles temporelles (centenaires à millénaires). Malgré le fait qu’aucune corrélation directe n’ait été observée entre les températures inférées en août et la productivité primaire, certaines indications suggèrent que les communautés de chironomides et de diatomées répondaient aux mêmes processus climatiques et environnementaux régionaux. Au cours de la dernière décennie, le nord du Québec a connu un réchauffement rapide et marqué, contrastant avec l’inertie relative des derniers millénaires. Cette étude fournit le scénario de référence par rapport auquel les changements environnementaux actuels et futurs pourront être comparés dans cette région

    Using Paleolimnology for Lake Restoration and Management

    No full text
    This e-book presents state-of-the-art research projects and opinions on using paleolimnology for lake restoration and managment. It illustrates the general idea that proposing adequate restoration and managment solutions must be based on the past. Knowing the natural and anthropic variations a water body went through defines the best ways for maintaining or restoring an ecosystem. By quantifying baseline conditions, paleolimnology provides a definite plan for restoration and management. This cannot be achieved without studying the past

    Using paleolimnology to find restoration solutions: the case of Lake Muzzano, Switzerland

    Get PDF
    Lake Muzzano (45°59′50″N 8°55′41″E, 337 m a.s.l.) is a hyper-eutrophied lake located in the Tessin region of Switzerland. Almost every year, algal blooms (Microcystis) cover the lake with a thickness of 1–2 cm. These blooms associated with periods of anoxia in summer have led to fish kills in 1967 and 1994. In the hope of avoiding these blooms, a bypass bringing water away from the lake has been established in 1999. This solution was not adequate as blooms kept reoccurring. Sediment removal was then proposed by the Tessin Canton as a possible remediation technique and The L.A.K.E.S Institute had a mandate in 2010 to study the lake (present and past state) to determine the reasons creating anoxia and algal blooms. The present state of the lake shows that anoxia is still occurring when the algal bloom covers the lake's surface. Subfossil diatom and chironomid analyses show that the baseline conditions were those found before 1922 AD when the lake was oligotrophic and supported a diversified community of chironomids suggesting good oxygenation. After 1922 AD, circulation to the lake was cut out and nutrients accumulated in the lake leading to anoxia and the establishment of Microcystis. Heavy metal analysis in the sediment shows that the concentration is above the national recommendation and thus sediment should not be removed or should be stored with hazardous material. Based on the present status of the lake and paleolimnological results, two solutions are proposed: to further decrease the nutrients coming in the lake (possibly using filtrating plants) followed by flushing to increase lake water circulation. Physical capping of the sediment to avoid exchange of heavy metals and phosphorus release at the water/sediment interface could also be envisaged once the two prime solutions are in place.Peer reviewedPeer Reviewe

    Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina

    No full text
    In the Southern Hemisphere, the lack of quantitative temperature records hampers the understanding of climate change since the Last Glaciation and refrains the comparison with the Northern Hemisphere records. To provide quantitative data, a 63-lake chironomid transfer functions was developed in Patagonia. Mean annual air temperature (MAT) was one ofthe mostimportantfactors explaining the distribution of chironomids while precipitation did not have any significant relationship with chironomid assemblages. The MAT model had a r2 of 0.64, a RMSE of 0.83 and a maximum bias of 1.81 ◦C, comparable to other transfer functions of this size. This model was applied to the Lake Potrok Aike (PTA) chironomid records which consisted of only four taxa (Phaenopsectra, Cricotopus, Smittia and Polypedilum). The chironomid-inferred air temperatures were colder-than-the-average (10.8 ◦C) during the Lateglacial with the coldest temperatures (9 ◦C in average) during the Antarctic Cold Reversal (ACR). Between ca. 8000 and 3500 cal. years BP, the chironomid-inferred air temperatures were warmer-than-the-average with a decreasing trend. From ca. 3500 cal. years BP to the present, the chironomid-inferred temperatures oscillated around the average. The difference between the chironomid-inferred air temperature in the surface sample and the climate normal(1961–1990) was 0.6 ◦C, suggesting that chironomids are sensitive enough to quantitatively reconstruct MAT at PTA. The general pattern of temperature changes reconstructed by the PTA chironomid record corresponded well to other quantitative records in the Southern Hemisphere. The results presented here show that investing in the development of chironomid transfer functions for quantitative climate research in the Southern Hemisphere is valuable.Fil: Massaferro, Julieta. Administracion de Parques Nacionales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Larocque Tobler, Isabelle. Limnology and Paleolimnology Services; Suiz
    corecore